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Abstract 

An Electronic Neural Loop (ENL) is a high frequency, fundamental electronic component, capable of 
identifying ENL characteristic Fourier components in analog signals. The process is near 
instantaneous and continuous. The theory and technology is described, with associated precedents 
supporting the functionality and uses.  This is a work in progress | All rights reserved. 
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1 How the ENL works 
 
A burning question even amongst some of 
Variance Dynamical Corporation's very own 
science team, is how (and why) the ENL 
works. In what follows, I will attempt a clear 
description of the ENL's operation from first 
principles. 
 The motivation for the inventions of 
Dr. Goodwin followed from investigations of 
the biological nervous system. Although 
interesting and instructive, this area of 
research falls under current research into 
cognitive computing and machine 
intelligence, and will not be covered in the 
current document. Instead focus will be given 
to the electronic component applications of 
the device. 

2 Short Description of ENL Operation 
 

 
Figure 1. ENL circuit 

Variance technology is based on the creation 
of standing waves between two transistors in 
an electronic circuit. The transistors act as 
nodes, between which standing waves which 
have an integral number of half wavelengths 

will develop resonances. The physical length 
of the transmission lines between transistors 
define the preferred wavelengths.  
 An analog signal containing the 
characteristic ENL frequency will produce a 
resonance by which identification is made. By 
this method, ENLs can be used to perform 
continuous Fourier component spectrum 
decompositions.  
 Thus an ENL does not frame the data 
or calculate Fourier components, but 
identifies their presence in analog signals. It 
is this property of our technology which 
makes it both extremely fast and continuous.  
 Sequentially channeling an input 
signal through cascading ENLs of various 
lengths, results in the full set of Fourier 
components, thus Variance's patented 
Automatic Fourier Analyzer (AFA) 
application. 

3 Waves 
 
Let us first examine the general properties of 
a wave, from which we will build higher 
concepts. The graphical representation of a 
simple wave, shown in Figure 2, contains 
everything we need for a visual inspection. 
 

 
Figure 2. A simple wave 

The amplitude V is the maximum height of a 
wave. In the case of a wave on the surface of a 
body of water, this amplitude represents the 
physical height of the wave and is measured  
in meters. When we speak of analog 
electronic signals, the amplitude represents 
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the maximum value of the alternating voltage, 
which described the analog signal. 
 The time needed for a wave to 
complete a cycle is called the period T 
measured in seconds. The length of this wave 
is called the wavelength λ, measured in 
meters. The wavelength is often quoted as the 
distance between consecutive peaks. To 
summarize, 
 

• Amplitude, A (Volt) 
• Period, T (Seconds) 
• Wavelength, λ (Meters) 

 
The wavelength of a signal also defines the 
scale size of its interactions with matter. For 
instance, radio waves can transmit signals by 
interacting with large antennae, but produce 
no acoustic effect on humans. Glass windows 
often resonate from acoustic tones produced 
from trucks passing by.  
 An appreciation of such analogies is 
necessary to understand the principles of 
ENL operation. When a standing wave 
develops along the transmission lines of an 
ENL, the wavelength of the "confined" 
frequency is exactly equal to the physical 
length of the line. We will discuss this more in 
the following chapters. 
 The frequency of the wave is the 
number of wave cycles repeated per second, 
also determined by the inverse of the period 
and is measured in Hertz, 
 

 𝑓𝑓 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑒𝑒𝑒𝑒

=
1
𝑇𝑇

 (1)  

 
So if you have a 100 MHz cable this means 
that the cable can transfer 100,000,000 wave 
cycles of voltage in one second. 

3.1 Wave Propagation Speed 
 
Having defined the anatomy of a wave, we 
can now move to elementary descriptions of 
wave mechanics. All mechanics start with a 
definition of the speed and so will we.  

 The speed of transmission of all 
waves in nature, are proportional to the 
wavelength and the frequency of a wave, 
 
 𝜈𝜈 = 𝜆𝜆𝑓𝑓 (2)  
 
In the case of electromagnetic radiation, the 
speed of light, 𝑐𝑐 = 2.998 ⋅ 108 𝑚𝑚/𝑠𝑠. Here we 
are interested in the wave propagation speed 
of an electrical voltage, which is often taken 
to be half of the speed of light, 𝑐𝑐𝑒𝑒 = 0.5𝑐𝑐. Let's 
take a moment to elaborate on what the 
transmission speed of an electronic signal is. 
 The discussion we have led so far 
addresses all types of waves, as they all share 
the same overall behavioral properties. 
Optical signals for instance, carried by 
photons travel at the speed of light through 
vacuum. The speed with which an optical 
wavefront in general, travels through a 
transmission medium depends on the 
refractive index of that medium, defined as, 
 
 𝑛𝑛 =

𝑐𝑐
𝑣𝑣

 (3)  
 
which is to say, the index of refraction is 
defined as the ratio of the speed of light in 
vacuum to the speed of light in the medium. 
 Photons are comprised of electric and 
magnetic fields, as shown in Figure 3, which 
tend to displace the electrons which are 
present in the transmission medium. The 
movement of these electrons in turn produce 
varying electromagnetic radiation, which is 
dispersed through the material. Thus the 
initial wave speed is decreased in the process, 
as energy must always be conserved. As 
waves propagate through various materials, 
their wavelength and velocity change, while 
frequency remains, according to equation (2).   

 
Figure 3. Electromagnetic radiation 
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The refractive index is also frequency 
dependent, which means different 
wavelengths of light will experience different 
losses in speed through a material. As a 
consequence, they will also refract differently 
at the boundary of a medium. This is exactly 
how rainbows are produced.  
 For a yellow photon, for instance with 
wavelength 590 nm, the refractive index of 
water is 𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1.3330. Therefore the speed 
of a yellow photon in water is, 
 

 𝑣𝑣 =
𝑐𝑐

𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
=

𝑐𝑐
1.3330

= 0.75𝑐𝑐 (4)  

 
To extend these equations to the speed of 
wave transmission through a conductor, we 
follow the same line of thinking. The 
transmission will travel through a conductor 
displacing the electrons found in the 
surrounding insulation.  
 Now, the speed of light in vacuum can 
be derived from Maxwell's equations to be 
(Appendix A), 
 

 𝑐𝑐 =
1

�𝜀𝜀0𝜇𝜇0
 (5)  

 
where 𝜺𝜺𝟎𝟎 is the permittivity and 𝝁𝝁𝟎𝟎 is the 
magnetic permeability of free space. In a 
dielectric medium, the speed of propagation 
is, 
 

 𝑣𝑣 =
1

�𝜀𝜀0𝜇𝜇0𝜀𝜀𝜀𝜀
=

𝑐𝑐
√𝜀𝜀𝜀𝜀

 (6)  

 
where 𝜀𝜀 and 𝜇𝜇 are the relative permittivity 
and permeability of the dielectric which 
forms the insulator. These together are called 
the "relative dielectric constant", 𝜿𝜿 = 𝜺𝜺𝜺𝜺. We 
can rewrite this equation as, 
 
 √𝜅𝜅 =

𝑐𝑐
𝑣𝑣

 (7)  
 
Comparing this with equation (4) we find, 
 
 𝑛𝑛 = √𝜅𝜅 (8)  
 

We have now made a connection between 
optical electromagnetic waves and electronic 
transmissions through a conductor, and we 
can clearly state the speed of transmission of 
an electronic wave as, 
 

 𝑣𝑣 =
𝑐𝑐
√𝜅𝜅

 (9)  

 
Let's consider some examples now. For most 
materials 𝜇𝜇 ≈ 1, so we can let 𝜅𝜅 ≈ 𝜀𝜀. A 
common material used for printed circuit 
boards (PCBs) is a laminated reinforced glass 
epoxy, with grade designation FR-4, having 
permittivity 𝜀𝜀𝐹𝐹𝐹𝐹4 = 4.8. A signal travels 
through its channels with speed, 
 

 𝑣𝑣𝐹𝐹𝐹𝐹4 =
1

√4.8
𝑐𝑐 ≅ 0.45𝑐𝑐 (10)  

 
If we were to suspend a copper wire, or wire 
of any conducting material in water at 0 0C, 
where 𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  = 88, the signal speed would 
be, 
 

 𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =
1
√88

𝑐𝑐 ≅ 0.10𝑐𝑐 (11)  

 
As we can see, the speed is unrelated to the 
material of the conductor. The physical 
characteristics of the medium around the 
wire are those which define the wave 
propagation speed. 
 In ENL research and prototype 
development, the transmission speed is taken 
to be 0.5c, in close accordance to expected 
values implied by equation (11).  
 
+[Dielectric Spectroscopy and PSF/2011 
Patents] 
 

3.2 The Wave Equation 
 
Consider a homogeneous string with one-
dimensional wave equation [3], 
 

 𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 =

1
𝑐𝑐2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2  (12)  
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where, 
 
• 𝑐𝑐 = 𝑇𝑇 𝜌𝜌⁄  is the transverse speed of wave,  
• T, is the tension on the string, 
• 𝜌𝜌, is the linear mass density of the string, 
• u(x,t), is a measure of deformation. 
 
Physical problems impose certain conditions 
on the solution u(x,t). For instance, a typical 
stretched-string problem implies that the 
string, of length L, is fixed at its ends. The 
general form of these boundary conditions is, 
 

 

lim
𝑥𝑥→0,𝐿𝐿

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 0 
 

lim
𝑥𝑥→0,𝐿𝐿

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 0 
(13)  

 
The first condition tells us the amplitude of 
the wave goes to zero at the boundaries. This 
is how we establish the nodes at the 
endpoints, which must be stationary.  
 The second assures us there is no 
motion perpendicular to the propagation 
direction, so there is no "slipping up and 
down", if we were to think of a rope tied to 
two posts. This condition becomes more 
important when we consider the full 
waveguide problem, where u(x,y,z,t). 
 

 
Figure 4. A stretched-string problem. 

Moreover, the physical problem begins at a 
certain instant of time, usually selected to be 
t=0, and with a specified state. These initial 
conditions, are functions of the variable x and 
can be expressed as, 
 
 𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢0(𝑥𝑥) (14)  

 

 
𝜕𝜕𝜕𝜕(𝑥𝑥, 0)
𝜕𝜕𝜕𝜕

= 𝑣𝑣0(𝑥𝑥) (15)  

 
These conditions together specify the initial 
shape and distribution of initial velocities of 
the string. They can be thought of as 
describing the energy content of the system, 
without which we would be looking at static 
solutions only. 
 To solve this problem we use the 
method of separation of variables, where we 
seek solutions to the partial differential 
equation (13), of the form, 
 
 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑇𝑇(𝑡𝑡) (16)  
 
where X(x) is designed to address the 
boundary conditions, which  are functions of 
position and T(t) the initial conditions. 
 Differentiating we form the left and 
right hand sides of equation (13), 
 

 𝜕𝜕2𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2 =

𝑑𝑑2𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑥𝑥2 𝑇𝑇(𝑡𝑡) (17)  

 

 𝜕𝜕2𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡2 = 𝑋𝑋(𝑥𝑥)

𝑑𝑑2𝑇𝑇(𝑡𝑡)
𝑑𝑑𝑡𝑡2  (18)  

 
Substituting equations (17) and (18) into 
(13), 
 

 𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 𝑇𝑇 =

1
𝑐𝑐2 𝑋𝑋

𝑑𝑑2𝑇𝑇
𝑑𝑑𝑡𝑡2  (19)  

 
Dividing both sides by X(x)T(t), we get, 
 

 1
𝑋𝑋
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 =

1
𝑐𝑐2

1
𝑇𝑇
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑡𝑡2  (20)  

 
In the equation above, the left-hand side 
depends only on x and the right-hand side 
only on t. It follows that they must both be 
constant, 
 

 1
𝑋𝑋
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = 𝜆𝜆 (21)  
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 1
𝑐𝑐2

1
𝑇𝑇
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑡𝑡2 = 𝜆𝜆 (22)  

 
By the method of separation of variables we 
have transformed a partial differential 
equation into two ordinary differential 
equations, with known solutions. 
 The equation for X(x), can be written 
as, 
 

 𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2 = 𝜆𝜆𝜆𝜆 (23)  

 
and leads to exponential functions for 𝜆𝜆 > 0, 
trigonometric functions if 𝜆𝜆 < 0 and to a 
linear function if 𝜆𝜆 = 0, 
 

   𝐴𝐴1𝑒𝑒𝑥𝑥√𝜆𝜆 + 𝐵𝐵1𝑒𝑒−𝑥𝑥√𝜆𝜆 𝜆𝜆 > 0
 𝐴𝐴2cos�𝑥𝑥√−𝜆𝜆�+ 𝐵𝐵2sin�𝑥𝑥√−𝜆𝜆� 𝜆𝜆 < 0

𝐴𝐴3𝑥𝑥 + 𝐵𝐵3 𝜆𝜆 = 0
 (24)  

 
Imposing our boundary conditions, we find 
valid solutions for 𝜆𝜆 < 0, 𝐴𝐴2 = 0 and 
 
 √−𝜆𝜆 =

𝑛𝑛𝑛𝑛
𝐿𝐿

(𝑛𝑛 = 1,2,3, … ) (25)  
 
The allowed values of the separation 
constant, or eigenvalues, are, 
 

 𝜆𝜆𝑛𝑛 = −
𝑛𝑛2𝜋𝜋2

𝐿𝐿2 (𝑛𝑛 = 1,2,3, … ) (26)  

 
The corresponding eigenfunctions comprise 
an infinite set, 
 
 𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐵𝐵𝑛𝑛sin �

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
� (𝑛𝑛 = 1,2,3, … ) (27)  

 
where 𝐵𝐵𝑛𝑛  are arbitrary nonzero constants. 
Now recall the solutions in equation (22), to 
which the separation constant (26) is also a 
solution, 
 

 1
𝑐𝑐2

1
𝑇𝑇𝑛𝑛
𝑑𝑑2𝑇𝑇𝑛𝑛
𝑑𝑑𝑡𝑡2 = −

𝑛𝑛2𝜋𝜋2

𝐿𝐿2  (28)  

 

Imposing our boundary conditions again 
for 𝜆𝜆 < 0, 
 

 𝑇𝑇𝑛𝑛(𝑡𝑡) = 𝐶𝐶𝑛𝑛cos�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

� + 𝐷𝐷𝑛𝑛sin�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

� 
 

(29)  

We can now summarize our solution of 
equation (18),  
 

 
𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡) = sin �

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
�× 

�𝐴𝐴𝑛𝑛cos�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

� + 𝐵𝐵𝑛𝑛sin�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

�� 
(30)  

 
where we have recast the arbitrary constants 
for simplicity (𝐴𝐴𝑛𝑛′ = 𝐵𝐵𝑛𝑛𝐶𝐶𝑛𝑛,𝐵𝐵𝑛𝑛′ = 𝐵𝐵𝑛𝑛𝐷𝐷𝑛𝑛).  
 This function 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡) represents all 
possible motions of the stretched string and 
are known as the characteristic modes or 
natural modes, of the vibrating string. Each 
one represents a harmonic motion with 
characteristic frequency or eigenfrequency, 
 
 𝜔𝜔𝑛𝑛 =

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

 (31)  
 
Substituting equations (31) into equations 
(16) and taking the necessary derivatives, we 
find that 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡) satisfies initial conditions of 
the form, 
 

 
𝑢𝑢0(𝑥𝑥) = 𝐴𝐴𝑛𝑛sin

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

 
 

𝑣𝑣0(𝑥𝑥) = 𝐵𝐵𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

sin
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

 
(32)  

 
We now need to extract the solutions which 
satisfy our desired initial conditions. To find 
all possible solutions to our problem, we take 
advantage of the principle of superposition, 
which tells us that any linear combination of 
solutions is also a solution, therefore, 
 
 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝐶𝐶1𝑢𝑢1(𝑥𝑥, 𝑡𝑡) + 𝐶𝐶2𝑢𝑢2(𝑥𝑥, 𝑡𝑡) + ⋯ (33)  
 
is also a solution to the wave equation. By 
extrapolation, an infinite series of such 
linearly combined solutions, is also a solution, 
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𝑦𝑦(𝑥𝑥, 𝑡𝑡) = � sin �

𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿
� ×

∞

𝑛𝑛=1

 

�𝐴𝐴𝑛𝑛cos�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

� + 𝐵𝐵𝑛𝑛sin�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

�� 
(34)  

 
provided the series converges, or represents 
a distribution. The function 𝑦𝑦(𝑥𝑥, 𝑡𝑡) is a 
Fourier sine series in x (and in t, which is of 
less importance). 
 Consequently, we have constructed a 
solution to our problem in the form of a 
series, which satisfies all our boundary 
conditions and initial conditions. 

3.3 Standing Waves 
 

 Figure 5. Standing Waves 

Having presented the analytical solutions to 
the wave equation, we can now take a step 
back and visualize some standing wave 
phenomena.  
 Figure 5 depicts a string of length 
𝐿𝐿 = 2 𝑚𝑚 and the first three orders of standing 
wave solutions. The amplitude scale is 
arbitrary.  
 

 
Figure 6. Standing Waves on a String 

 In general any integral number of half 
wavelengths will equal the total length of the 
string and represents a standing wave 
solution, 
 
 𝐿𝐿 =

𝑛𝑛
2
𝜆𝜆 (35)  

 
We can rewrite equation (3) as,  
 

 𝜆𝜆 =
𝜈𝜈
𝑓𝑓

 (36)  

and so, 
 
 𝑓𝑓𝑛𝑛 =

𝑛𝑛
2
𝜈𝜈
𝐿𝐿

 (37)  
 
is the range of frequencies which can be 
found travelling along this length of string.   
 For instance, if we assume the three 
waves shown in the figure are sound waves, 
they have frequencies (𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 340 𝑚𝑚/𝑠𝑠), 
 

 
𝑓𝑓1 = 85 𝐻𝐻𝐻𝐻 
𝑓𝑓2 = 170 𝐻𝐻𝐻𝐻 
𝑓𝑓3 = 255 𝐻𝐻𝐻𝐻 

(38)  

 
These frequencies are unique solutions. 

4 Fourier Transform 
 
From these examples one can see how 
dealing with a large number of frequencies is 
cumbersome. The problem in all transient 
systems is finding a representation that is 
independent of time.  
 When dealing with frequencies, it is 
convenient to plot the power or energy of the 
wave against its frequency, in what is called a 
Fourier Spectrum. Namely, a Fourier 
Transform (FT) transforms a signal 
representation from the time domain, to the 
frequency domain. 
 The Fourier Transform of a function 
f(x) is given by [3], 
 

 𝐹𝐹(𝑘𝑘) =
1

√2𝜋𝜋
� 𝑓𝑓(𝑥𝑥)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
+∞

−∞

 (39)  
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with the inverse transform, from frequency 
space back to time space being, 
 

 𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋
� 𝐹𝐹(𝑘𝑘)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑
+∞

−∞

 (40)  

 
where 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆, is the wavenumber. 

4.1 Fourier Series 
 
The power of Fourier transforms becomes 
evident when we recall a fundamental 
algebraic theorem which states [4], 
 
"Any function can be written as the sum of an 
even and an odd function."  
 
 Even functions are symmetric about 
the y-axis and can be defined as, 
 
 𝐸𝐸(𝑥𝑥) = 𝐸𝐸(−𝑥𝑥) (41)  
 
 Similarly, odd functions are 
antisymmetric about the y-axis and can be 
written as, 
 
 𝑂𝑂(𝑥𝑥) = −𝑂𝑂(−𝑥𝑥) (42)  
 

 
Figure 7. The sum of even and odd functions 

 Figure 6, graphically describes how 
any function 𝑓𝑓(𝑥𝑥) can be described as the 
sum of an even and odd function, 
 
 𝑓𝑓(𝑥𝑥) = 𝐸𝐸(𝑥𝑥) + 𝑂𝑂(𝑥𝑥) (43)  
 

 The Fourier Cosine Series can now be 
defined from cos⁡(𝑚𝑚𝑚𝑚) which is an even 
function for all m. Therefore, we can write 
any even function as, 
 

 𝑓𝑓(𝑡𝑡) =
1
𝜋𝜋
� 𝐹𝐹𝑚𝑚cos(𝑚𝑚𝑚𝑚)
∞

𝑚𝑚=0

 (44)  

 
where 𝐹𝐹𝑚𝑚  are a set of coefficients that define 
the series and we are only interested in 𝑓𝑓(𝑡𝑡) 
over the interval (−𝜋𝜋,𝜋𝜋). Similarly, the 
Fourier Sine Series is always odd for all n, 
 

𝑓𝑓(𝑡𝑡) =
1
𝜋𝜋
� 𝐹𝐹𝑛𝑛sin(𝑛𝑛𝑛𝑛)
∞

𝑚𝑚=0

 (45)  

 
where 𝐹𝐹𝑛𝑛 are coefficients which define the 
sine series. We can calculate these 
coefficients by multiplying both sides of the 
equation by sin(𝑛𝑛′ 𝑡𝑡) and integrating, 
 

�𝑓𝑓(𝑡𝑡) sin(𝑛𝑛′𝑡𝑡)𝑑𝑑𝑑𝑑
𝜋𝜋

−𝜋𝜋

= 
1
𝜋𝜋
� �𝐹𝐹𝑛𝑛sin(𝑛𝑛𝑛𝑛)sin(𝑛𝑛′𝑡𝑡)𝑑𝑑𝑑𝑑

𝜋𝜋

−𝜋𝜋

∞

𝑚𝑚=0

 

(46)  

 
 The coefficient 𝐹𝐹𝑛𝑛  is independent of 
time, so the integral reduces significantly to, 

 � sin(𝑛𝑛𝑛𝑛)sin(𝑛𝑛′𝑡𝑡)𝑑𝑑𝑑𝑑
𝜋𝜋

−𝜋𝜋

= 𝜋𝜋𝛿𝛿𝑚𝑚𝑚𝑚 ′  (47)  

 
where we have taken advantage of the 
properties of the Kronecker delta function  
property, 
 

 𝛿𝛿𝑚𝑚𝑚𝑚 ′ = �𝜋𝜋,    if 𝑚𝑚 = 𝑚𝑚′
0,    if 𝑚𝑚 ≠ 𝑚𝑚′

� (48)  

 
to arrive at, 
 

𝐹𝐹𝑛𝑛 = �𝑓𝑓(𝑡𝑡)sin(𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑
𝜋𝜋

−𝜋𝜋

 (49)  
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which gives us the Fourier Sine coefficients 
for any f(t). A similar expression holds for the 
Cosine coefficients.  
 Now that we have arrived at closed 
form expressions for the Fourier Cosine and 
Sine Series, we can define a Fourier Series by 
the equation, 
 

𝑓𝑓(𝑡𝑡) =
1
𝜋𝜋
� 𝐹𝐹𝑚𝑚 cos(𝑚𝑚𝑚𝑚)
∞

𝑚𝑚=0

+
1
𝜋𝜋
� 𝐹𝐹𝑛𝑛sin(𝑛𝑛𝑛𝑛)
∞

𝑚𝑚=0

 

 (50)  
 
which by extension can be used to describe 
any function, because as we stated at the 
beginning of this section, ANY function can be 
written as the sum of an odd and an even 
function.  
 This remarkable result tells us that 
every motion, behavior and function in nature 
can be modeled by a series of simple 
trigonometric components. Since Variance 
technology takes advantage of this fact 
directly, while staying in the analog regime, it 
has the potential to be a most powerful 
analysis technique. 
 In Figure 7, we see how a square wave 
can be approximated by the sum of three sine 
functions. Adding more orders to the sine 
function, improves the accuracy of the 
approximation, which in terms of Variance 
technology, this translates to more ENLs 
within the specific AFA device. 

 
Figure 8. A square wave simulated by three orders of sine 

waves. 

4.2 Fourier Spectrum 
 
A Fourier Series approximation of  a wave, 
allows us to extract any indigenous 
frequencies present. The resulting range of 
frequency and amplitude pairs can be plotted 
on a graph, which concisely represents the 
wave. The signals Figure 8 can be described 
very simply by the Fourier spectrum shown 
in Figure 9. 
 This graph shows a wave of frequency 
1 Hz and amplitude 12 m, a 3 Hz wave of 
amplitude 3 m and a 5 Hz wave of amplitude 
2 m.  
 On the vertical axis the power of the 
wave is often plotted in what is known as a 
power spectrum, which is especially useful 
when the signal to noise ratio is sought. 
 

 
Figure 9. Fourier spectrum of the square pulse partial 

decomposition. 

 A Fourier spectrum is undeniably a 
powerful diagnostic and analytical tool. 
Fourier analysis is in fact a ubiquitous 
calculation in modern technology. In 
telecommunications, voice data is recorded 
and compressed by eliminating redundant 
Fourier components. The common radio 
tunes its transmission to a specific carrier 
wave, by creating a resonance at the radio 
station's frequency. Medical instrumentation 
such as nuclear magnetic resonance imagers 
(NMRIs) use powerful magnetic fields and 
radio frequency fields to align hydrogen 
atoms. The internet itself is an enormous 
network of encoded signal transmissions. 
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5 The Casimir Effect 
 
In the 1950s a physicist by the name of 
Hendrik Casimir, was trying to calculate the 
var der Waals forces between polarizable 
molecules.  He proposed that two conducting 
plates would only permit certain frequencies 
to exist between the two, those satisfying the 
appropriate standing wave conditions. A 
surplus of external wavelengths would 
develop a characteristic pressure gradient. 
 

 
Figure 10. The Casimir effect: an imbalance in the 
quantum fluctuations of empty space can push two metal 
plates together. 

 This phenomenon has subsequency 
been proven to exist by several groups and 
has far reaching consequences to the fields of 
Quantum Mechanics as well as Cosmology.  
 The theory surrounding the operation 
of the Casimir force is reminiscent of ENL 
principles. The differences are that the 
Casimir effect excludes zero point field 
frequencies, whereas the in Variance 
technology, traditional electronic signals are 
being excluded. This provides us with yet 
another piece of evidence pointing to 
frequency filtering in nature, by promoting 
the development of standing waves. 

6 Wave Phenomena in Electronics 
 
Resonance phenomena are familiar to all of 
us in our day to day life. Most commonly, we 
are witness to resonances in our homes when 
a heavy vehicle passes by and we hear our 
windows vibrating. This however does not 
happen when all vehicles come by and it also 
does not happen for every window, even if 
they are exactly the same make and design. 
We directly conclude from this observation 
that every object has a characteristic sound 

frequency, which is capable of producing 
large mechanical oscillations.  
 The same is true for electronic 
circuits. Whereas variations in resonance 
frequencies between physical objects depend 
on the material and its environment (brace, 
supporting structure, etc), in electronics the 
physical characteristics can be analyzed in 
terms of the resistance (R), inductance (L) 
and capacitance (C) of a circuit. All of these 
present a measure of opposition to 
alternating currents.  

6.1 Resonance Frequency 
 
 Now let us examine how resonance 
phenomena manifest. During a resonance 
phenomenon in general, a characteristic 
quantity of the system experiences a drastic 
amplification in its nominal value. In 
macroscopic phenomena this would depend 
on its mass, modulus of elasticity and 
moment of inertia to make but a few. In 
electrical circuits this depends on R, L and C, 
namely the impedance of the circuit, which 
describes the total opposition to the 
alternating circuit, 
 

 𝑍𝑍 = �𝑅𝑅2 + �𝐿𝐿𝐿𝐿 −
1
𝐶𝐶𝐶𝐶

�
2

 (51)  

 
Where we have assumed a series RLC circuit 
and 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 is angular frequency. The 
current through the circuit is given by Ohm's 
law, 
 

 𝐼𝐼 =
𝑉𝑉
𝑍𝑍

 (52)  

 
The impedance is always positive and can be 
minimized by eliminating the terms in the 
parenthesis, which happens when the 
inductive equals the capacitive reactance. 
This happens at the resonance frequency, 
 

 𝑓𝑓0 =
1

2𝜋𝜋√𝐿𝐿𝐿𝐿
 (53)  
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Then the impedance equals the physical 
resistance of the circuit and the current 
becomes maximum, 
 

 𝐼𝐼0 =
𝑉𝑉
𝑅𝑅

 (54)  

 
 This type of resonance produces a 
characteristic curve which is sharper for 
decreasing resistance.  
 

 
Figure 11. RLC Current Resonance 

6.2 Signal Reflections 
 
Reflections occur as a result of 
discontinuities, such as an imperfection in an 
otherwise uniform transmission line, or when 
a transmission line is terminated with other 
than its characteristic impedance. The 
reflection coefficient Γ is defined thus, 
 

 𝛤𝛤 =
𝑉𝑉𝑟𝑟
𝑉𝑉𝑓𝑓

 (55)  

 
Γ is a complex number that describes both the 
magnitude and the phase shift of the 
reflection. 
 These signal reflections in electronics 
imply the mechanics of boundary layers 
which satisfy certain conditions which set up 
standing waves. Therefore, the most basic for 
idea that the ENL can setup a standing wave 
within a transmission line is supported. 

6.3 Standing Wave Ratio 
 
A useful measure of the amplitude of a signal 
in a  uniform transmission line is the standing 

wave ratio (SWR). The voltage component of 
a standing wave in a uniform transmission 
line consists of the forward wave (with 
amplitude 𝑉𝑉𝑓𝑓) superimposed on the reflected 
wave (with amplitude 𝑉𝑉𝑟𝑟). 
 For the calculation of voltage SWR 
(VSWR), only the magnitude of Γ, denoted by 
ρ, is of interest. Therefore, we define, 
 
 𝜌𝜌 =  | 𝛤𝛤 | (56)  
 
At some points along the line the two waves 
interfere constructively, and the resulting 
amplitude 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  is the sum of their 
amplitudes, 
 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑟𝑟 = 𝑉𝑉𝑓𝑓 + 𝜌𝜌𝜌𝜌𝑓𝑓 = 𝑉𝑉𝑓𝑓(1 + 𝜌𝜌) (57)  
 
 At other points, the waves interfere 
destructively, and the resulting amplitude 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  is the difference between their 
amplitudes, 
 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑓𝑓 − 𝑉𝑉𝑟𝑟 = 𝑉𝑉𝑓𝑓 − 𝜌𝜌𝜌𝜌𝑓𝑓 = 𝑉𝑉𝑓𝑓(1 − 𝜌𝜌) (58)  
 
 The voltage standing wave ratio is 
then equal to, 
 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

=
1 + 𝜌𝜌
1 − 𝜌𝜌

 (59)  

 
 Since 𝜌𝜌 ∈ [0, 1], then 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ≥ 1, 
where a value close to 1 is most desirable, 
corresponding to a low reflection coefficient. 
 To understand this better, we can 
perform a time dependant calculation, using 
the wave equation form of the forward  
 
 𝑉𝑉𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴 sin(𝜔𝜔𝜔𝜔 − 𝑘𝑘𝑘𝑘) (60)  
 
and reflected voltages, 
 
 𝑉𝑉𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝜌𝜌𝜌𝜌 sin(𝜔𝜔𝜔𝜔 + 𝑘𝑘𝑘𝑘) (61)  
 
Using the principle of superposition we arrive 
at the total voltage at any given time, 
 
 𝑉𝑉𝑡𝑡(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝑉𝑉𝑟𝑟(𝑥𝑥, 𝑡𝑡) (62)  
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After some processing we arrive at, 
 
𝑉𝑉𝑡𝑡(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴�4𝜌𝜌 cos2𝑘𝑘𝑘𝑘 + (1 − 𝜌𝜌)2  

× cos(𝜔𝜔𝜔𝜔 + 𝜙𝜙) 
(63)  

 
This brief study, provides us with president 
for the mechanics and processing of standing 
waves in electronic circuits - the basic 
principle applied to ENL operation.  
 Usually SWR studies are used in 
transmitter/antenna impedance matching, 
where a low SWR are desirable. In  our case 
however, the standing wave is set up between 
the transistors and propagated around the 
closed neural loop, purposefully. In addition 
to some reflections from the transistor 
terminals, we also take into account the 
transistors amplification ratio. 
 Current resonances are setup 
between the ENL legs by virtue of the 
operation of the transistor. Each time the 
signal comes around it is cleaner and cleaner, 
having rejected more and more uncommon 
modes and the amplification becomes more 
efficient. With every cycle the Q of the ENL 
increases. The required ENL fidelity for each 
application will define how much of this 
signal we need to 'burn off' on each 
transmission line termination.  
 Eventually we say the ENL fires, 
signifying detection of its characteristic 
frequency. Specifically,  "ENL firing" signifies 
the sufficient isolation of a signal within the 
ENL, so as to allow for its detection above any 
background noise. This has been taken to be 
5𝜎𝜎 in theoretical calculations. An accurate Q-
value calculation will be part of the prototype 
benchmarking planned for the near future.  
 
+[Variance Custom ENL/SWR Model] 

7 Transistor Operation 
 
There are certain rules that govern the 
operation of any bipolar transistor. These 
rules of operation can be stated as follows [6, 
7, 8]. 

 For an NPN transistor, the voltage at 
the collector VC should be greater than the 
voltage at the emitter VE (VC>VE) by at least a 
few tenths of a volt. On the other hand, for a 
PNP transistor, the emitter voltage should be 
greater than the collector voltage (VE>VC) by a 
similar amount. In either case the voltage 
differences establishes an electric field that 
serves as the impetus for the direction of 
current flow. 
 

 
Figure 12. A schematic of a PNP transistor. 

 For an NPN transistor there is a 
voltage drop from the base to the emitter of 
about 0.6 volts. For a PNP transistor, in 
contrast, there is a voltage rise of about 0.6 
volts from the base to the emitter. 
 Transistors can amplify base current. 
For a base current of 0.2 mA when VCE or 
VEC≃12 V, for example, the transistor 
amplifies the base current to about 7.5 mA on 
the collector. This is an amplification factor of 
about 37.5. This can be expressed by saying 
that IC=βIB where IC is the collector current, IB 
is the base current and where β is the current 
gain. So, in the foregoing example, β=37.5. 
 The above characteristics and rules 
may be mathematically summarized as 
follows, 
 
 𝐼𝐼𝐶𝐶 = 𝛽𝛽𝐼𝐼𝐵𝐵 (64)  
 
 𝐼𝐼𝐸𝐸 = 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝐵𝐵  (65)  
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 Combining these equations gives us 
an equation that relates emitter and base 
currents, which is the counterpart of the first 
gain equation, 
 
 𝐼𝐼𝐸𝐸 = 𝛽𝛽𝐼𝐼𝐵𝐵 + 𝐼𝐼𝐵𝐵 = (𝛽𝛽 + 1)𝐼𝐼𝐵𝐵  (66)  
 
 From the discussion above regarding 
the about 0.6 V changes, 
 
  NPN:    𝑉𝑉𝐵𝐵𝐵𝐵 = 𝑉𝑉𝐵𝐵 − 𝑉𝑉𝐸𝐸 = 0.6 𝑉𝑉  (67)  
 
  PNP:    𝑉𝑉𝐵𝐵𝐵𝐵 = 𝑉𝑉𝐵𝐵 − 𝑉𝑉𝐸𝐸 = −0.6 𝑉𝑉  (68)  
 
 Finally, the internal, inherently 
present resistance of a bipolar transistor is 
called the transresistance, rtr, and is suitably 
expressed as, 
 

 𝑟𝑟𝑡𝑡𝑡𝑡 (𝑡𝑡) = 𝑘𝑘 +
𝑘𝑘

2𝜋𝜋2 �
1
𝑛𝑛2 cos(𝑛𝑛𝑛𝑛𝑛𝑛)

∞

𝑛𝑛=𝑜𝑜𝑜𝑜𝑜𝑜

 (69)  

 
 In most circuits, transresistance is 
negligible. However, because the ENL is 
designed in a somewhat non-ordinary way 
we make note of it here.   
 
+[AC Transistor Response Profiling] 
+[Semiconductor node formation promoting SW] 

8 ENL Operation 
 
Having touched on all of the theoretical and 
practical foundations of Variance technology, 
we can now focus on ENL operation. 

8.1 ENL Transmission Line Calibration 
 
The current prototype manufactured by 
SemQuest, focused on designing gigahertz 
ENLs, which allowed them to be small enough 
to be printed on an integrated circuit. This 
decision comes with all the design benefits 
that modern electronic foundries offer such 
as, high signal to noise ratio, low parasitic 
impedance, inductance and capacitance. 
 The decision to make the ENLs 
operate at the relatively high frequency of 10 

GHz makes the size of the ENL legs of the 
order of 1 cm, which is the appropriate scale 
size of an integrated circuit. The length of the 
ENL legs, which allow a standing wave with 
fundamental frequency f to develop, is 
 

 𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑛𝑛𝑛𝑛
2𝑓𝑓

 (70)  

 
 Where, we note that only integral 
numbers of half wavelengths forms standing 
waves, 
 

 𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑛𝑛
𝜆𝜆
2

 (71)  

 
 If we assume that the speed of 
transmission of an electronic signal is half of 
the speed of light, as discussed, then for a 
sinusoidal signal with frequency 𝑓𝑓 = 10 𝐺𝐺𝐺𝐺𝐺𝐺, 
the ENL must have legs, 
 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑐𝑐𝑒𝑒
2𝑓𝑓

=
1.5 ∙ 108

2 ∙ 10 ∙ 109 = 0.0075 𝑚𝑚

= 0.75 𝑐𝑐𝑐𝑐 
  (72)  
 
And for a signal at the lowest end of the ENL 
spectrum where 𝑓𝑓 = 100 𝑀𝑀𝑀𝑀𝑀𝑀, 
 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑐𝑐𝑒𝑒
2𝑓𝑓

=
1.5 ∙ 108

2 ∙ 100 ∙ 106 = 0.75 𝑚𝑚 (73)  

  
When designing an ENL, the transmission line 
length is determined by the simple analysis 
described above. The circuit design is also 
very simple compared to the design and 
analysis of other frequency and Fourier 
analysis electronics. This is one of the most 
attractive features of Variance signal analysis 
technology. 

8.2 ENL Circuit Analysis 
 
Figure 13 is a schematic diagram of the first 
exemplary embodiment of an ENL. In this 
diagram, arbitrary values for voltages on the 
transistors (voltage is proportional to energy) 
have been selected for discussion purposes. 
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These voltages are in accord with the 
transistor rules discussed above. 
 

 
Figure 13. Exemplary ENL Circuit. 

 As shown, the collector of NPN 
transistor 112 is charged at +12 V. In other 
words, VCnpn=12 V. A transistor behaves like 
an open switch unless there is a base current. 
That base current can be assured by also 
setting VBnpn=12 V. As discussed above, in an 
NPN transistor there will be about a 0.6 V 
drop (caused by the depletion zone). That 
means that VEnpn=11.4 V. Thus, an electric 
field (the pathway and impetus for current 
flow) from the collector, through the base, 
and on to the emitter exists. The main NPN 
circuit is completed through element 128, 
which is used to set VEnpn. 
 Connector 120, coupled to the 
emitters of NPN transistor 112 and PNP 
transistor 114, comprises at least some 
resistance. For this example, the resistance is 
such that VEnpn=11.4 V is dropped to 
VEpnp=11.3 V. In that eventuality, current flow 
is assured from the emitter of NPN transistor 
112 to the emitter of PNP transistor 114. The 
0.6 V drop discussed above results in 
VBpnp=1O.7 V. Because connector 118 joins 
the two bases, and the base of NPN transistor 
112 is already set at 12 V, the resistance of 

connector 118 should be such that the 
voltage drop across connector 118 is equal to 
1.3 V. In turn, to assure an electric field 
through to the PNP collector, the collector 
voltage is set to VCpnp=10.6 V. This last PNP 
circuit is completed through output node 
102, although another route can easily be 
provided if one wished. 
 We note that although the circuit is 
drawn so that current flows from the 
collector of PNP transistor 114 to the 
collector of NPN transistor 112 (with the 
current arrow drawn in that direction), the 
voltages described above would be 
inappropriate for that purpose. This issue 
may be addressed by the addition of, for 
example, a DC power supply ("DCPS"). In 
Figure 13, the DCPS is shown as elements 
130 and 132 using the circuit symbol for a 
battery. Thus, for example, the voltage across 
element 130 may be 0.6 V and the voltage 
across element 132 may also be 0.6 V. These 
two voltage sources are used to increase 
voltage while not increasing current. Note 
that either of these voltage sources could be 
more or less than 0.6 V, depending on the 
particular circuit design used. Also note that 
they represent another path length on the 
ENL circuit. The current path with the 
additional DCPS path length should remain an 
integer wavelength. 
 This addition of the DCPS boosts the 
voltage, thus assuring the current flows as 
depicted. The DCPS may be replaced, for 
example, by a voltage amplification circuit or 
other means for providing the needed 
voltage. 
 The rest of the circuit elements are 
chosen to "tune" the ENL to a desired 
frequency. This is done using the following 
analysis. In Figure 13, elements 122 and 124 
are capacitors such that element 122 
comprises high capacitance and element 124 
comprises low capacitance. In combination 
with element 128, the effect is to charge the 
NPN transistor in such a way that no actual 
current flows. If the capacitance of element 
122 is made high enough (for example, in the 
microfarad range), then the NPN collector is 
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not influenced very much when the 
superposed signal passes by. However, if at 
the same time the capacitance of element 124 
is made low enough (for example, in the 
picofarad or nanofarad range), then element 
124 acts like a plain wire for the same signal. 
Then, during passage of certain data window, 
displacement current flows in NPN transistor 
112. NPN transistor 112 "turns on" to 
displacement current, but only during the 
passage of the signal data window. (Note that 
in this example, the entire ENL circuit is 
enabled at all times signal is turned on). 
 To explain this desired level of 
current flow, we note that for elements 122 
and 124, the capacitor plate connected to the 
positive voltage supply becomes positive. The 
bottom or transistor side of the capacitor 
draws negative current, electrons, from 
wherever is available until it is at -12 V. That 
means that on the collector, there exists a  
situation in which the N-type material the 
collector is made from is +12 V from its 
normal electron-rich state. The NPN collector 
cannot draw electrons from the circuits on 
the right side of Figure 13 because there is no 
current flowing in the base of either NPN 
transistor 112 or PNP transistor 114. In 
other words, these circuits are not complete. 
Likewise, in the quiescent state, the circuits 
on the left side of the figure are not complete 
either, again because there is no current in 
the PNP base and as a result, the battery or 
DCPS circuit is open. 
 However, when a data window passes 
by, some very rapid changes start to occur. 
Because of the way the voltage changes in the 
data window, when the first spike of the data 
window just does hit element 122, everything 
gets more positive. That positive change is 
reflected by a positive change on  the NPN 
collector, but because of the reactance of 
element 122 the change is relatively small. 
On the other hand, immediately thereafter, 
the data window then hits element 124. In 
element 124, the reactance is low so current 
flows essentially unimpeded. Additionally, 
base current now flows. This therefore 

activates the ENL and the ENL's quantization 
function. 
 The final step is picking a quiescent 
point, in our case a quiescent current, for NPN 
transistor 112. The question now becomes 
what values of capacitance to choose for 
elements 122 and 124 in order to obtain the 
desired results. It is well known that 
capacitive reactance is given by the formula, 
 

 𝑋𝑋𝐶𝐶 =
𝑉𝑉0

𝐼𝐼0
=

1
𝜔𝜔𝜔𝜔

 (74)  

 
where Vo  and I0 are peak values and where ω 
is the angular frequency of the signal. Xc is 
measured in ohms. 
 For this example, assume the biasing 
voltage on the ENL matches the voltage used 
by a CCD (i.e., about 12 V). If the CCD voltage-
spikes are about 12 mV in magnitude and 
positive then, for this example, Vo would be 
at most about 12.012 V. 
 For element 122, we would like the 
reactance to be high for a given ω. That 
reactance, however, should be set based on 
the frequency components that are present in 
the input signal. To get at that information, 
the CCD data window should be represented 
by a Fourier series expansion. With such an 
expansion, the dominant frequencies that 
make up the CCD data window can be 
determined. The function shown in Figure 14, 
is representative of an individual voltage-
spike in a digital camera.  
 

 
Figure 14. A Gaussian peak commonly produced by 

electronic devices. 
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 Figure 14 looks like a sharply peaked 
Gaussian probability function. Therefore, for 
the purposes of this example, this function is 
represented as a Gaussian probability 
distribution of the form, 
 
 𝑓𝑓(𝑥𝑥) = 𝑁𝑁𝑒𝑒−𝜎𝜎𝑥𝑥2  (75)  
 
The Fourier transform of that function is, 
 

 𝐹𝐹(𝑘𝑘) = 𝑁𝑁�
1

2𝜎𝜎
𝑒𝑒−𝑘𝑘

2

4𝜎𝜎  (76)  

 
where the above functions have been 
centered on the origin; where N, often taken 
as the normalization constant, is here going to 
be taken as N=12 mV; σ is the standard 
deviation and where ω is the angular 
frequency. F(k) is the distribution of 
"frequencies." 
 Note that according to Figure 14, the 
full-width-at-half-maximum (FWHM), is 18 
ps. And, because FWHM=2.355, σ is a 
standard normal distribution relationship, 18 
ps=2.355 σ, so that, 
 
 𝜎𝜎 = 7.64 × 10−12 sec (77)  
 
 To make the form of the above 
equations match the variables herein, there 
needs to be a substitution of variables 
according to the formula, 
 
 𝑥𝑥 = 𝑐𝑐𝑖𝑖𝑡𝑡 (78)  
 
where 𝑐𝑐𝑖𝑖 = 1.5 × 108 is as usual the electronic 
speed in the medium and is taken to constant. 
When making this kind of substitution, k also 
needs to be changed according to the formula, 
 

 𝑘𝑘 =
𝜔𝜔
𝑐𝑐𝑖𝑖

 (79)  

 
Making this substitution gives us, 
 
 𝑓𝑓(𝑡𝑡) = 𝑁𝑁𝑒𝑒−𝜎𝜎𝑐𝑐2𝑡𝑡2  (80)  
 

 𝐹𝐹(𝜔𝜔) = 𝑁𝑁�
1

2𝜎𝜎
𝑒𝑒− 𝜔𝜔2

4𝜎𝜎𝑐𝑐4  (81)  

 
where N and σ still refer to the original 
Gaussian parameters. The above expressions 
are centered on the origin. The value of 
Equation (81) at 𝜔𝜔 = 0 is just, 
 

 𝐹𝐹(0) = 𝑁𝑁�
1

2𝜎𝜎
 (82)  

 
where it is found that 𝐹𝐹(0) = 3.0669 × 103 . In 
that case, half-max is 1.5350 × 103. Now the 
question becomes, what frequency 
characterizes half-max. To answer that 
question use equation (10), insert the value 
for half-max, then solve for ω, to find, 
 
 𝜔𝜔 = 46.27 × 1010  rad/s (83)  
 
Since, 𝜔𝜔 = 2𝜋𝜋𝜋𝜋, 
 
 𝑓𝑓 = 7.37 × 1010 Hz (84)  
 

 From Equation (82), one can calculate 
𝜎𝜎 for the transform Gaussian. And, at half-
max, most of the non-thermal information in 
the CCD signal data window has been 
incorporated. Additionally, Equation (84) 
demonstrates the size of the ENLs that should 
be used to build an AFA. 
 We note that Equation (83) gives a 
number for ω in the 1011 order-of-magnitude 
range. If that number is inserted into 
Equation (75),  with 𝐶𝐶 = 10 pF then 𝑋𝑋𝐶𝐶 = 1 Ω, 
whereas for  𝐶𝐶 = 1 μF then 𝑋𝑋𝐶𝐶 = 10 KΩ. Thus, 
the high frequency informational input 
associated with the CCD photo sites 
discharging will pass virtually unimpeded 
through the picofarad capacitor, whereas the 
same window will encounter a good deal of 
resistance to passage through the microfarad 
capacitor. This then confirms the exemplary 
values of capacitance for elements 122 and 
124. 
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 During the quiescent period, 
 
 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 12.012 𝑉𝑉 ≈ 12 𝑉𝑉 (85)  
 
 In addition, when the  data window 
hits, the NPN collector is only slightly affected 
but the NPN base current varies directly 
according to the input signal. From the above 
rules and equations governing the behavior of 
transistors, Equation (67) can be applied to 
ascertain that VEnpn=11.4 V. If it is assumed 
that the connector between the emitters of 
NPN transistor 112 and PNP transistor 114 is 
of minimal resistance then VEpnp=11.4 V. From 
Equation (68) we find that VBpnp=10.8 V. 
 Now if, in the circuit shown, the base 
of NPN transistor 112 is 12 V and the base of 
the PNP transistor 114 is 10.8 V, then 
connector 118 should have some significant 
resistance to reduce the voltage. The issue 
here is that to make the base connector have 
that resistance, a resistor should be inserted 
into the circuit or connector 118 should be 
doped in such a way that it comprises that 
resistance. 
 The so-called “standing wave” is 
created by a particular frequency EM wave 
traveling around the ENL, coming back on 
itself, in phase, adding the energy of the initial 
wavefront cycle to the next cycle following 
the trailing edge. 
 
+[Simplify, add Bandwidth, Bifocality] 
+[Trace Frequency Peaks through Circuit] 
+[Add Amplitude Monitor Subsystem] 
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